兔子数列规律就是斐波那契数列原理,指的是一个数列,1、1、2、3、5、8、13、21等等,从第三项开始,每一项都是数列中前两项之和。
“兔子数列”规律即“斐波那契数列”原理,它指的是这样一个数列:1、1、2、3、5、8、13、21、34、55、89、144、233 ……看出是什么规律了吧,不错,就是从第三项开始每一项都是数列中前两项之和。在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)。在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 斐波拉契数列的出现13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。书中有许多有趣的数学题,其中最有趣的是下面这个题目: “如果一对大家都叫它“斐波拉契数列”,又称“兔子数列”。这个数列有许多奇特的的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近于0.618,正好与大名鼎鼎的“黄金分割律”相吻合。